
 Cloudera ML on Kubernetes/RKE2/OpenShift
 using https://www.sigstore.dev/ and NeuVector

 (very draft)

 Author: Marc Chisinevski (Cloudera)
 Date: Nov 26, 2023

 Context 1
 Admission control policies to block users from starting ML Applied ML Prototypes
 and ML sessions using non-signed custom ML runtime images 4
 Loading (large) ML models to memory without staging on disk 10
 Protect the ML pods / sessions / apps against fileless attacks 11
 Signing Rust static binaries with embedded ML models 13
 Airgapped environments - using https://docs.zarf.dev/docs/zarf-overview to finetune
 Large Language Models on air-gapped Openshift 4.12 with NVIDIA GPUs 15
 Useful links 16

 Context

 Cloudera ML Runtimes (https://github.com/cloudera/ml-runtimes) are a set of container
 images created to enable ML development and host data applications in the Cloudera Data
 Platform (CDP) and the Cloudera Machine Learning (CML) service.

 ML Runtimes provide a flexible, fully customizable, lightweight development and production
 machine learning environment for both CPU and GPU processing frameworks while enabling
 unfettered access to data, on-demand resources, and the ability to install and use any
 libraries/algorithms without IT assistance.

 Cloudera ML sessions provide an interactive command prompt and terminal.

https://www.sigstore.dev/
https://github.com/cloudera/ml-runtimes
https://www.cloudera.com/products/cloudera-data-platform.html
https://www.cloudera.com/products/cloudera-data-platform.html
https://www.cloudera.com/products/machine-learning.html

 Cloudera Applied ML Prototypes
 (AMPs, https://cloudera.github.io/Applied-ML-Prototypes/#/) are
 ML projects that can be deployed with one click directly from Cloudera Machine Learning
 (CML).
 AMPs enable data scientists to go from an idea to a fully working ML use case in a fraction of
 the time. They provide an end-to-end framework for building, deploying, and monitoring
 business-ready ML applications instantly.
 → Prototypes encode best practices for solving machine problems.
 → Each step in the solution (e.g. data ingest, model training, model serving etc.) is declared
 in a yaml configuration file.
 → Run examples locally or automatically deploy steps within your configuration file using

https://cloudera.github.io/Applied-ML-Prototypes/#/

 NeuVector
 From https://repo1.dso.mil/dsop/neuvector/neuvector/enforcer/-/tree/development :
 “NeuVector is the only Kubernetes-Native Container Security solution that acts as an
 automated Container Firewall supporting:

 ● Patented Deep Packet Inspection of network payloads and protocol
 ● Layer 7 Micro-Segmentation of East-West container traffic within the cluster
 ● Automated packet capture
 ● Data Loss Prevention
 ● Automatic Security-as-Code policy generation
 ● Supports service mesh such as Istio
 ● Image scanning & CI/CD integrations
 ● CI/CD pipeline scanning and admission control from Dev to Prod
 ● Run-time containers, hosts and platform scanning
 ● Audits host and container against Docker, Kubernetes CIS Benchmarks

 NeuVector automatically discovers the normal behavior of container processes and network
 activity, allowing it to automatically build security policies to protect container based
 services.

 Using Layer 7 network inspection, unauthorized connections between containers or from
 external networks can be blocked without disrupting normal container sessions.

 NeuVector automatically protects security sensitive files, and additional file or directory
 protection can be added to security policies.

 With Layer 7 network inspection, application level attacks such as DDoS and DNS on
 containers are detected and prevented.

 Real-time detection and alerting adds a layer of network security to the dynamic container
 environment, even for trusted or encrypted connections in a service mesh such as Istio”.

https://repo1.dso.mil/dsop/neuvector/neuvector/enforcer/-/tree/development

 Admission control policies to block users from starting ML Applied ML Prototypes
 and ML sessions using non-signed custom ML runtime images

 In the example below, we will be using Rust custom ML runtimes images with embedded ML
 models.

 Many runtimes are provided by default with the Cloudera platform:

 Users can also build their own customized runtimes.
 For example, in Cloudera Private Cloud on Kubernetes,
 users can build custom CML runtimes with Rust => embed / serve ML models from
 standalone Rust static binaries, use super-fast ML frameworks s.a.
 https://github.com/huggingface/candle etc

https://github.com/huggingface/candle

 Admission policies / webhooks can be defined to allow/block users from starting
 ML sessions using non-signed custom ML runtime images.

 For example, let’s sign a customized ML runtime image from our private Nexus images
 repository:

 COSIGN_EXPERIMENTAL=1 cosign sign
 ip-10-10-207-158.us-west-2.compute.internal:9999/b868@ sha256:be447d3815b5bbaf1fd0ea03c3b65799
 621f2efaa9b240f5c571aeab4b34139b
 …
 Successfully verified SCT...
 WARNING: "ip-10-10-207-158.us-west-2.compute.internal:9999/b868" appears to be a private repository,
 please confirm uploading to the transparency log at "https://rekor.sigstore.dev"
 Are you sure you would like to continue? [y/N] y
 tlog entry created with index: 52720413
 Pushing signature to: ip-10-10-207-158.us-west-2.compute.internal:9999/b868

 skopeo inspect
 docker://ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmuslgpu:0.3
 {

 "Name": "ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmuslgpu",
 "Digest": " sha256:be447d3815b5bbaf1fd0ea03c3b65799621f2efaa9b240f5c571aeab4b34139b ",
 "RepoTags": [

 "0.1",
 "0.2",
 "0.3",
 "0.4",
 " sha256-be447d3815b5bbaf1fd0ea03c3b65799621f2efaa9b240f5c571aeab4b34139b.sig "

],

 rekor-cli get --log-index 52720413
 LogID: c0d23d6ad406973f9559f3ba2d1ca01f84147d8ffc5b8445c224f98b9591801d
 Index: 52720413
 IntegratedTime: 2023-11-27T00:58:23Z
 UUID: 24296fb24b8ad77ae5f143b717f15e909a16705fca48762ac9966f9f175180ad91e8974e5295b143
 Body: {

 "HashedRekordObj": {
 "data": {

 "hash": {
 "algorithm": "sha256",

 "value": "1e57af526354a5a1dc3e4713aba8bbb407a3ca9259119208635dbfab362e3455"
 }

 },
 "signature": {

 "content":
 "MEUCIDRz/HHBJfBtI2emloQZXa99RsdqSgrZMOst1mpJNEjkAiEAw1ESAaEc+Lk9He3oiSZumJM13Z5WzCY2is1jrm
 Mlc0E=",

 "publicKey": {
 "content":

 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUMwakNDQWxlZ0F3SUJBZ0lVTm9RajI5bkxBblF1MDNEaEhwcj
 REbmViZ21Vd0NnWUlLb1pJemowRUF3TXcKTnpFVk1CTUdBMVVFQ2hNTWMybG5jM1J2Y21VdVpHVjJNUjR3SEFZR
 FZRUURFeFZ6YVdkemRHOXlaUzFwYm5SbApjbTFsWkdsaGRHVXdIaGNOTWpNeE1USTNNREExT0RFeVdoY05Nak14
 TVRJM01ERXdPREV5V2pBQU1Ga3dFd1lICktvWkl6ajBDQVFZSUtvWkl6ajBEQVFjRFFnQUVKR3pNME5HOGYvc0hqd
 VBjU1diOXhyV0x6c2ZmejFFTXpTZTEKeWJpQzM4T2Y1dnhucU5jbi9PcFBPcDNaenVJbExLdE1GWDRXdFhPZlJJN2NR
 R2tuemFPQ0FYWXdnZ0Z5TUE0RwpBMVVkRHdFQi93UUVBd0lIZ0RBVEJnTlZIU1VFRERBS0JnZ3JCZ0VGQlFjREF6Q
 WRCZ05WSFE0RUZnUVVSbGVJCjVNSVMyaTNnL3gwK0RlbHhXUEJOamNvd0h3WURWUjBqQkJnd0ZvQVUzOVBwej
 FZa0VaYjVxTmpwS0ZXaXhpNFkKWkQ4d0lBWURWUjBSQVFIL0JCWXdGSUVTYldGeVkyZGpjRFpBWjIxaGFXd3VZMj
 l0TUN3R0Npc0dBUVFCZzc4dwpBUUVFSG1oMGRIQnpPaTh2WjJsMGFIVmlMbU52YlM5c2IyZHBiaTl2WVhWMGFEQX
 VCZ29yQmdFRUFZTy9NQUVJCkJDQU1IbWgwZEhCek9pOHZaMmwwYUhWaUxtTnZiUzlzYjJkcGJpOXZZWFYwYURD
 QmlnWUtLd1lCQkFIV2VRSUUKQWdSOEJIb0FlQUIyQU4wOU1Hckd4eEV5WXhrZUhKbG5Od0tpU2w2NDNqeXQvNG
 VLY29BdktlNk9BQUFCakE1SQpxYU1BQUFRREFFY3dSUUlnTlJEKzBabFlnaVlEWTNBaGVXREhkbDhtYWo4THFXeDgz
 aTlPTElQT2FmNENJUUR2ClQ0NE5WNkFYOW14R3pHRUg2Ylk2MW1ZYnprK01kbmxCZENYUFY4ME9MakFLQmdncW
 hrak9QUVFEQXdOcEFEQm0KQWpFQS9hU3FDTGs5czR2a1JraW8ydjlVZ3dLWVhRVTE1SlVJbzlKYVBMajUzcmRxY2d
 PdGs0cFZHaVZaNkhSRAo0Z0p5QWpFQTFRSDA0WngyU2VEbXE2Q2V3d05Kb01mWldGRUwzVmVzeXIyYlFDamN4
 RkZvNytDNktZaVVwU0x0CnFXL3JJQ1krCi0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K"

 }
 }

 }
 }

 cosign verify --key cosign.pub
 ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmuslgpu:0.3 | jq
 .

 Verification for
 ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmuslgpu:0.3 --
 The following checks were performed on each of these signatures:

 - The cosign claims were validated
 - Existence of the claims in the transparency log was verified offline
 - The signatures were verified against the specified public key

 [
 {

 "critical": {
 "identity": {

 "docker-reference":
 "ip-10-10-207-158.us-west-2.compute.internal:9999/b868/rustmuslgpu"

 },

 "image": {
 "docker-manifest-digest":

 "sha256:be447d3815b5bbaf1fd0ea03c3b65799621f2efaa9b240f5c571aeab4b34139b"
 },
 "type": "cosign container image signature"

 },
 "optional": {

 "Bundle": {
 "SignedEntryTimestamp":

 "MEUCIQCeA/nymhV+qh/RipiMTkwEnBm+jX5/mFRj2E+iSFqqaQIgMc+HsT7bHLgrTTNDZb
 7+EtFORMquM3XZFf8bsNEZyhg=",

 "Payload": {
 "body":

 "eyJhcGlWZXJzaW9uIjoiMC4wLjEiLCJraW5kIjoiaGFzaGVkcmVrb3JkIiwic3BlYyI6eyJkYXRhIj
 p7Imhhc2giOnsiYWxnb3JpdGhtIjoic2hhMjU2IiwidmFsdWUiOiI4MWQwNGQwMzFkZjZkY2R
 mNGNiOTM2MTI2N2IyYjY3NGRkMGQ1ZjhhMzJiY2ZhYmNlOWVmNTM0Y2ZmODUzMzJkIn19
 LCJzaWduYXR1cmUiOnsiY29udGVudCI6Ik1FWUNJUUNFSU13R3pQZVl3NjRvV1REU0tkNkQ
 4R3RsaXcyNlJVZXBFaDlwKzgzaERRSWhBSnkzeUVETHBhcmZXQ08rZnZOanRQbFRVTit1ekZ
 4ay85aE1Kc2NOV0NUbCIsInB1YmxpY0tleSI6eyJjb250ZW50IjoiTFMwdExTMUNSVWRKVGlC
 UVZVSk1TVU1nUzBWWkxTMHRMUzBLVFVacmQwVjNXVWhMYjFwSmVtb3dRMEZSV1VsTGI
 xcEplbW93UkVGUlkwUlJaMEZGVHpnM1IwdHBhbk5RTmpNclZtOXdkRmN3VEhWRk4zcFFab
 GRZY3dwVWNFdDVSR0pUY1hSSFFuTkhRbkJyWW5NNGFXazNOMVJJUVZScmFXWjBZMHBo
 VGxGblV6QjFUMjQ0TkdONE5HWlRObFZwV0ZkV1JsSkJQVDBLTFMwdExTMUZUa1FnVUZWQ
 1RFbERJRXRGV1MwdExTMHRDZz09In19fX0=",

 "integratedTime": 1700962817,
 "logIndex": 52523771,
 "logID":

 "c0d23d6ad406973f9559f3ba2d1ca01f84147d8ffc5b8445c224f98b9591801d"
 }

 }
 }

 }
]

 In NeuVector, we can defined admission control policies using the “image signed” criterion:

 => cannot start an ML session using a non-signed image:

 And everything is duly reported by NeuVector:

 Short video of CML Rust runtime - multistage building of static Rust binaries orchestrated by
 K8s/RKE2/Openshift: https://youtu.be/w9PLuofxJPI

 Example Dockerfile: https://github.com/marcredhat/rustcml/blob/main/Dockerfile

https://youtu.be/w9PLuofxJPI
https://github.com/marcredhat/rustcml/blob/main/Dockerfile

 Loading (large) ML models to memory without staging on disk

 In the previous use case, the ML model was embedded in a signed image.

 From ML sessions, applications and Applied ML Prototypes,
 users can load large ML models to memory without staging on disk:
 Video at
 https://www.linkedin.com/posts/chisinevski_cloudera-private-cloud-kubernetes-loading-acti
 vity-7133642651286867968-CyAj

 In the case of ML sessions, the attack surface area is higher as they allow interactive
 terminals using sshd.

 Example of CML session loading an ML model directly to memory, without staging on disk.

 Similarly, ML models can be loaded from Apache Ozone and other s3-compatible object
 storage; just swap out the logic for TransformerModel.__init__ in the screenshot above with
 something like
 https://stackoverflow.com/questions/67633551/reading-a-pretrained-huggingface-transfor
 mer-directly-from-s3

https://www.linkedin.com/posts/chisinevski_cloudera-private-cloud-kubernetes-loading-activity-7133642651286867968-CyAj
https://www.linkedin.com/posts/chisinevski_cloudera-private-cloud-kubernetes-loading-activity-7133642651286867968-CyAj
https://stackoverflow.com/questions/67633551/reading-a-pretrained-huggingface-transformer-directly-from-s3
https://stackoverflow.com/questions/67633551/reading-a-pretrained-huggingface-transformer-directly-from-s3

 Protect the ML pods / sessions / apps against fileless attacks

 Context
 From https://github.com/arget13/DDexec/blob/main/README.md :
 “In Linux in order to run a program it must exist as a file, it must be accessible in some way
 through the file system hierarchy (this is just how execve() works). This file may reside on
 disk or in ram (tmpfs, memfd) but you need a filepath. This has made very easy to control
 what is run on a Linux system, it makes it easy to detect threats and attacker's tools or to
 prevent them from trying to execute anything of theirs at all (e. g. not allowing unprivileged
 users to place executable files anywhere).
 But this technique is here to change all of this. If you can not start the process you want...
 then you hijack one already existing.

 The following is an example of the use of a shellcode that will create a memfd (a file
 descriptor pointing to a file in memory) to which we can later write binaries and run them,
 from memory obviously.”

 Note that the above works well even for images / ML runtimes build from
 distroless or scratch: you can bring your own busybox, tools etc as shown in the
 examples below :

 If this is attempted in an ML session, NeuVector can detect it as “process profile violation,
 not from an image file”:

https://github.com/arget13/DDexec/blob/main/README.md

 Piping the base64 of the binary you want to run (without newlines) into ddexec.sh is much
 more likely to go undetected by antivirus and endpoint detection and response solutions:

 In this case, an attacker with access to an ML session pod / interactive terminal can
 interfere with ML models that we are loading directly in memory etc

 As this is hard to detect/stop in the case of interactive ML sessions, my current approach is
 to:
 - only allow external access from ML apps / pods that do not have sshd and are based on
 approved/ signed custom ML images/runtimes.
 - block all container -> external access from ML sessions.

 So an ML session can load an ML model (with or without staging it on disk) but we
 mitigate the risk of the ML model being exfiltrated.

 Signing Rust static binaries with embedded ML models

 TBD. Discuss:)

 I was able to use cosign/rekor and upload (Rust) binaries to ttl.sh.
 I have not been able to do the same with a Nexus repository. Any examples are
 much appreciated.

 For tls.sh

 BLOB_SUM=$(sha256sum /root/rust/projects/hello_cargo/target/release/hello_cargo |
 cut -d' ' -f 1)
 echo $BLOB_SUM
 360657448c9d6c3d9af7fa1680333eb27ffdc1d0df3f38749e7ab519a02a36c0

 BLOB_URI=ttl.sh/rustbinary:1h

 BLOB_URI_DIGEST=$(cosign upload blob -f
 /root/rust/projects/hello_cargo/target/release/hello_cargo $BLOB_URI)
 Uploading file from [/root/rust/projects/hello_cargo/target/release/hello_cargo] to
 [ttl.sh/rustbinary:1h] with media type [application/octet-stream]
 File [/root/rust/projects/hello_cargo/target/release/hello_cargo] is available directly at
 [ttl.sh/v2/rustbinary/blobs/sha256:360657448c9d6c3d9af7fa1680333eb27ffdc1d0df3f387
 49e7ab519a02a36c0]

 cosign sign --key cosign.key $BLOB_URI_DIGEST
 Enter password for private key:
 …
 tlog entry created with index: 52708333
 Pushing signature to: ttl.sh/rustbinary

 echo $BLOB_URI_DIGEST
 ttl.sh/rustbinary@sha256:0f3a34df1974ac2e96c85abb3104bc86807af583a0667afd1b770c
 3bb387976b

 cosign verify --key cosign.pub $BLOB_URI_DIGEST

 Verification for
 ttl.sh/rustbinary@sha256: 0f3a34df1974ac2e96c85abb3104bc86807af583a0667afd1b7
 70c3bb387976b --
 The following checks were performed on each of these signatures:

 - The cosign claims were validated
 - Existence of the claims in the transparency log was verified offline
 - The signatures were verified against the specified public key

 [{"critical":{"identity":{"docker-reference":"ttl.sh/rustbinary"},"image":{"docker-manifes
 t-digest":"sha256:0f3a34df1974ac2e96c85abb3104bc86807af583a0667afd1b770c3bb387
 976b"},"type":"cosign container image
 signature"},"optional":{"Bundle":{"SignedEntryTimestamp":"...","integratedTime":17010
 41568," logIndex":52708333 ,"logID":"c0d23d6ad406973f9559f3ba2d1ca01f84147d8ffc
 5b8445c224f98b9591801d"}}}}]

 rekor-cli get --log-index 52708333
 LogID: c0d23d6ad406973f9559f3ba2d1ca01f84147d8ffc5b8445c224f98b9591801d
 Index: 52708333
 IntegratedTime: 2023-11-26T23:32:48Z
 UUID:
 24296fb24b8ad77af40de335104d2af424f06eb8dbb7d4410f37b7e2164321cb59d99c30d79
 45844
 Body: {

 "HashedRekordObj": {
 "data": {

 "hash": {
 "algorithm": "sha256",
 "value":

 "a33999fdbe7a24f73288b9c233706c6f12ca9991db2e63783510ac1e9836701c"
 }

 },
 "signature": {

 "content":
 "MEYCIQCQhLJ3hdcYjHdeHPwmZjquMHwDklH2dbr65R/hvsRDlwIhAJy8Xcu28noKT/owDMB
 wY1HPctEgixzWe/bljbwiC8O6",

 "publicKey": {
 "content":

 "LS0tLS1CRUdJTiBQVUJMSUMgS0VZLS0tLS0KTUZrd0V3WUhLb1pJemowQ0FRWUlLb1pJem

 owREFRY0RRZ0FFTzg3R0tpanNQNjMrVm9wdFcwTHVFN3pQZldYcwpUcEt5RGJTcXRHQnNH
 QnBrYnM4aWk3N1RIQVRraWZ0Y0phTlFnUzB1T244NGN4NGZTNlVpWFdWRlJBPT0KLS0tLS1
 FTkQgUFVCTElDIEtFWS0tLS0tCg=="

 }
 }

 }
 }

 Airgapped environments - using https://docs.zarf.dev/docs/zarf-overview to
 finetune Large Language Models on air-gapped Openshift 4.12 with NVIDIA GPUs

 Video demo:
 https://www.linkedin.com/posts/chisinevski_using-zarf-to-finetune-large-language-models-
 activity-7090927558904459264-UFrO

 https://www.linkedin.com/pulse/deploying-dark-how-zarf-saved-my-deployment-amidst-gith
 ub-greene-30nle/

 Zarf Package :
 A compressed tarball package that contains all of the files, manifests, source repositories,
 and images needed to deploy your infrastructure, application, and resources in a
 disconnected environment.

 Q: Would the recommendation be to cosign the zarf packages as well?

https://docs.zarf.dev/docs/zarf-overview
https://www.linkedin.com/posts/chisinevski_using-zarf-to-finetune-large-language-models-activity-7090927558904459264-UFrO?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/chisinevski_using-zarf-to-finetune-large-language-models-activity-7090927558904459264-UFrO?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/pulse/deploying-dark-how-zarf-saved-my-deployment-amidst-github-greene-30nle/
https://www.linkedin.com/pulse/deploying-dark-how-zarf-saved-my-deployment-amidst-github-greene-30nle/
https://docs.zarf.dev/docs/create-a-zarf-package/zarf-packages

 Useful links

 https://repo1.dso.mil/dsop/neuvector/neuvector/enforcer/-/tree/development

https://repo1.dso.mil/dsop/neuvector/neuvector/enforcer/-/tree/development

